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Breast cancer cells frequently acquire mutations in faithful DNA repair genes, as
exemplified by BRCA-deficiency. Moreover, overexpression of an inaccurate DNA repair
pathway may also be at the origin of the genetic instability arising during the course
of cancer progression. The specific gain in expression of POLQ, encoding the error-
prone DNA polymerase Theta (POLθ) involved in theta-mediated end joining (TMEJ), is
associated with a characteristic mutational signature. To gain insight into the mechanistic
regulation of POLQ expression, this review briefly presents recent findings on the
regulation of POLQ in the claudin-low breast tumor subtype, specifically expressing
transcription factors involved in epithelial-to-mesenchymal transition (EMT) such as
ZEB1 and displaying a paucity in genomic abnormality.
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INTRODUCTION

Genetic abnormalities have been largely described as a major hallmark of cancer. Typically,
dysfunctional faithful DNA repair is at the origin of the numerous genomic aberrations
driving malignant transformation by endowing cells with adaptive and proliferative advantages
(Hanahan and Weinberg, 2011).

DNA double-strand break (DSB) repair pathways are generally classified into two categories,
namely homologous recombination (HR) and canonical non-homologous end joining (cNHEJ).
HR requires 5′ to 3′ end resection, RAD51 loading, strand invasion and DNA synthesis using
an intact homologous template. In contrast, cNHEJ does not necessitate a homologous template
and is instead dependent on the KU complex, DNA-PKcs, and XRCC4/LIG4. Alternative end
joining pathways (Alt-EJ) including microhomology-mediated end joining (MMEJ) has also been
described, which in contrast to cNHEJ acts on the 5′ to 3′ resected DSB HR intermediates.
Additionally, MMEJ relies on DNA synthesis directed by short tracts of flanking microhomology
leading to typical patterns of microhomology-flanked deletions and insertions. The proteins
involved in MMEJ include the 5′ to 3′ resection factors MRE11, RAD50, NBN, CtIP, and EXO1
as well as PARP1 and LIG3. However, the most prominent factor associated with MMEJ is the DNA
polymerase Theta (POLθ) encoded by the POLQ gene. POLθ is a unique multifunctional enzyme
with an N-terminal helicase-like domain linked by a central region to a C-terminal A-family DNA
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polymerase domain (Seki et al., 2003). As a consequence of the
major involvement of POLθ, MMEJ has also been termed theta-
mediated end joining (TMEJ) (Schimmel et al., 2017, 2019).

Recently, in the context of mammary cancer, high POLQ
expression was observed in the most genomically unstable breast
cancer subgroup containing HR-deficient tumors (Prodhomme
et al., 2021). Conversely, in a subgroup distinguished by
low genomic instability, a low frequency of TP53 mutations
(Morel et al., 2017) and expression of epithelial-to-mesenchymal
transition (EMT) features, as well as low POLQ expression
were detected (Prodhomme et al., 2021). The EMT program,
naturally inducing a phenotypic switch during embryonic
development or adult tissue homeostasis by the transcriptional
repression of epithelial factors, such as E-cadherin (CDH1 gene),
may be expressed during tumorigenesis to confer epithelial-
to-mesenchymal plasticity to cancer cells, which then acquire
stem-like properties (Ye and Weinberg, 2015; Brabletz et al.,
2018; Stemmler et al., 2019). Various transcription factors
have been shown to orchestrate EMT, named the EMT
inducing-transcription factors (EMT-TF), as Zinc finger E-box
binding homeobox 1 (ZEB1). ZEB1 is associated with chemo-
resistance and radio-resistance properties partly attributed
to phosphorylation of ZEB1 by Ataxia-telangiectasia-mutated
(ATM) (Zhang et al., 2014) and to the ZEB1 transcriptional
activation of ATM (Zhang et al., 2018). ATM is a central regulator
of DNA damage response (DDR) signaling which channels DSB
repair into the process of HR.

Several aspects of the mechanisms underlying the choice of
DNA repair pathway remain unanswered. Numerous studies
have shown that individually both DNA damage repair pathways
and the EMT process can be hijacked to promote cancer.
What if these mechanisms were interconnected during cancer
initiation and/or progression? Here, we address the relationship
between replication stress generated by tumor initiation and/or
progression and TMEJ or EMT features, and how these
factors/processes ultimately contribute to genomic stability.

SUBSECTIONS:

Replication Stress, Genomic Instability,
and Cancer Progression
Genome stability is compromised by exogenous insults such
as chemical carcinogens and ionizing radiation. Endogenously-
induced DNA damage generated during the process of
chromosome duplication can also affect the stability of the
genome. Then, DNA replication forks can be slowed down
or stalled by various natural replication barriers, a process
referred to as replication stress (RS) (Zeman and Cimprich, 2014;
Macheret and Halazonetis, 2015). RS is detected at early stages
of tumorigenesis and is generally considered to be the driving
force behind cancer progression (Bartkova et al., 2005; Gorgoulis
et al., 2005; Negrini et al., 2010). Indeed, oncogene-driven cell
proliferation induces a high level of RS, arising notably from the
perturbation of replication origin activation and timing as well
as increased conflicts between replication and transcription. It
results in under-replicated regions and the persistence of stalled
and collapsed forks become major sources of chromosome

breakage and instability. If two converging replication forks stall
with no licensed origin in-between, a double fork stalling event
occurs and the replication of this stretch of DNA has a high
probability of being compromised. The main consequence of a
double fork stalling event is the generation of under-replicated
parental DNA (UR-DNA; also called “unreplicated DNA”), which
can persist when the cells enter mitosis and lead to chromosomal
breaks inheritable by the next generation of cells (Bertolin et al.,
2020; Franchet and Hoffmann, 2020). Generally, collapsed forks
also lead to DSBs, hence RS is also largely associated with the
generation of DSBs, major threats to genome integrity and
cell viability. These chromosomal breakages and alterations
provide a permanent sub-population of cellular variants upon
which selection could act, a proposed driving mechanism for
tumor heterogeneity and development of drug resistance. Clonal
evolution in cancer can result from the multiple forms of selective
pressures that allow some mutant sub-clones to multiply while
others become extinct.

While genomic instability is generally associated with poor
prognosis, excessive chromosomal instability is deleterious for
cell fitness and is correlated with enhanced cancer outcome,
arguing in favor of an appropriate threshold in cancer cells
for limiting extremely risky RS and DSBs (Sansregret and
Swanton, 2017; Maiorano et al., 2021). Therefore, one of the
most important features of cancer cells is the need to adapt
to severe replicative defects and the ensuing excessive DSBs
that are normally incompatible with cell survival. Importantly,
several of these adaptive responses currently represent a
very active area of research as they are considered to be
therapeutically exploitable. First is the ATR-CHK1 checkpoint
response which coordinates the stability of arrested forks and
fork repair processes, preventing premature entry into mitosis
and ensuring the completion of DNA replication (Saldivar et al.,
2017). High expression of the genes encoding the checkpoint
mediators CHK1, Claspin and Timeless known to stabilize
stalled replication forks upon RS and that could counteract
excessive RS in cancer cells, was correlated with poor patient
survival (David et al., 2016; Bianco et al., 2019). The second
adaptive response corresponds to molecular factors including
RAD52 of mitotic DNA synthesis (MiDAS), a process that
differs from semi-conservative DNA replication in S-phase and
which neutralizes potentially lethal chromosome mis-segregation
and non-disjunction by restraining the persistence of under-
replicated DNA in mitosis (Franchet and Hoffmann, 2020).
MiDAS is described as a form of HR-based DNA repair highly
prevalent in aneuploid cancer cells, where it counteracts DNA
replication stress that arises at “difficult-to-replicate” loci such as
common fragile sites (Bergoglio et al., 2013). The third category,
which will be developed in the next paragraph, includes the POLQ
gene encoding POLθ.

TMEJ Limits Loss of Chromosomal
Integrity
Although POLQ orthologs are present in multiple species (Seki
et al., 2003; Seki and Wood, 2008), in normal cells, TMEJ
activity for DSB repair is very low and POLQ deficiency in
several species has been shown to have a minor impact on

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 August 2021 | Volume 9 | Article 727429

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-727429 August 6, 2021 Time: 15:21 # 3

Prodhomme et al. ZEB1 and TMEJ Influence Genome Stability

organismal development (Alexander et al., 2016; Thyme and
Schier, 2016). In contrast, in cells that are deficient in HR or
NHEJ, including BRCA1/2 mutated cancer cells, POLθ becomes
essential, indicative of synthetic lethal genetic interactions
between the backup POLθ/TMEJ repair pathway and HR or
NHEJ (Ceccaldi et al., 2015; Mateos-Gomez et al., 2015; Feng
et al., 2019; Kamp et al., 2020; Carvajal-Garcia et al., 2021;
Patel et al., 2021). It has been proposed that POLθ favors end
joining of two separated DSBs (distal end joining) (Hwang
et al., 2020). Moreover, a study recently revealed a broader
landscape of synthetic lethality with POLθ, emphasizing a
critical and general role for POLθ in protecting cells from the
accumulation of non-productive HR intermediates at sites of
DNA replication-associated DSBs, even when canonical DSB
repair pathways are functional (Feng et al., 2019), notably
TMEJ has been proposed to contribute to the repair of single-
ended DSBs at collapsed forks (Wang et al., 2019; Figure 1).
Because of its high inaccuracy, TMEJ has been originally
considered as a backup DNA repair pathway. However, TMEJ
has been proposed to be essential in the repair of collapsed
replication forks with sister chromatids containing an inter-
strand crosslink (Wyatt et al., 2016; Feng et al., 2019; Schrempf
et al., 2021) as well as the repair of G4 quadruplex structures
(Koole et al., 2014). Nevertheless, the regulation of TMEJ
versus HR need to be further explored for this particular DNA
damage. POLθ contains an exonuclease-like domain but lacks
3′

→5′ proofreading activity, explaining why POLθ is an error-
prone polymerase (Arana et al., 2008). Because of its low
fidelity and the unique thumb domain that holds positively
charged residues to grasp the unstable primer terminus, POLθ

has the ability to extend DNA from mismatched primers
(Zahn et al., 2015). In the TMEJ process, microhomologies
are identified by a bidirectional progression to a maximum
of 15 nucleotides into flanking DNA through a scanning
mechanism initiated from the 3′ terminus (Carvajal-Garcia
et al., 2020). Aborted synthesis is frequent for POLθ as it
is not sufficiently processive, leading to additional rounds of
microhomology search, annealing and synthesis which can be
observed in some cancer genomic scars (Pettitt et al., 2020),
such as insertions of 3 to 30 bp of sequences identical to
flanking DNA. Despite these mutagenic features, POLθ/TMEJ
has been clearly demonstrated to prevent some chromosome
translocations and mis-segregations by fixing DSB per se, i.e.,
limiting loss of chromosomal integrity (Hwang et al., 2020).
Hence, it is possible that the high expression of POLθ observed
in multiple cancers, frequently defined as a bad prognostic
marker (Lemee et al., 2010; Pillaire et al., 2010; Allera-Moreau
et al., 2012), has evolved to cope with chromosome fragility
and assist the completion of DNA replication to prevent
catastrophically large deletions and aberrant chromosome
segregation. The increase in mutational frequency as well as
short deletions and insertions associated with TMEJ could
be the price to pay for cancer cell survival (Figure 1).
Several companies are now considering POLθ as a strong
therapeutic target and are on the verge of launching POLθ

inhibitors, targeting especially breast and ovarian cancers with
BRCA1/2 deficiency.

ZEB1 Controls TMEJ
Initially, indirect evidence highlighted a role for EMT in the
regulation of TMEJ. The expression of ZEB1 is activated by
the cytokine transforming growth factor-β (TGFβ) signaling
pathway (Shirakihara et al., 2007), the inhibition of which
compromises the HR and cNHEJ DSB repair mechanisms
and increases the reliance on the error prone alt-EJ/TMEJ
pathway. TGFβ signaling impediment leads to a significant
increase in chromosomal aberrations in irradiated cells from
human papilloma virus-positive head and neck squamous cell
carcinoma (HNSC) (Liu et al., 2018). More recently, TGFβ was
confirmed to broadly control the DNA damage response and
to transcriptionally inhibit alt-EJ/TMEJ genes, such as those
of POLQ, PARP1, and LIG1. Interestingly, the identified TGFβ

and alt-EJ gene signatures were anticorrelated in HNSC, in
glioblastoma, squamous cell lung cancer, and serous ovarian
cancers. Furthermore, tumors classified as low TGFβ and high
alt-EJ were characterized by an insertion-deletion mutation
signature containing short microhomologies across several
cancers (Liu et al., 2021).

Further insights have been recently gained when ZEB1 was
shown to modulates TMEJ activity by directly inhibiting POLQ
expression (Prodhomme et al., 2021). Essentially, ZEB1 and
POLQ expression are mutually exclusive in breast tumors.
Secondly, ZEB1 inhibits POLQ transcription by directly binding
to the POLQ promoter. Transcription inhibition and the resulting
reduction of POLθ protein levels strongly impacts TMEJ activity.
The use of a functional HPRT assay clearly demonstrated that
ZEB1 limits TMEJ-associated genomic instability through the
regulation of POLQ transcription (Prodhomme et al., 2021).

This new piece of evidence showing the reduction of
TMEJ activity by ZEB1 contributes to explaining the paucity
of genomic aberrations displayed by ZEB1-expressing tumors.
ZEB1 expression is a hallmark of claudin-low breast tumors
(Morel et al., 2012; Fougner et al., 2019; Stemmler et al.,
2019; Pommier et al., 2020) and ZEB1 counteracts the onset
of oxidative stress in response to oncogene-induced replicative
insults (Morel et al., 2017). Moreover, POLQ expression level is
low in all CL tumors as compared to other breast cancer subtypes
(Prodhomme et al., 2021). However, the characterization of three
separate claudin-low subgroups, namely CL1, CL2 and CL3, with
distinct transcriptomic, epigenetic, and genetic features led us
to speculate on the correlation between the expression of TMEJ
factors and ZEB1 levels in each subgroup (Pommier et al., 2020).
Indeed, we showed here that POLQ expression is the lowest in
CL1, displaying the highest level of ZEB1 while POLQ shows
the highest expression in CL3, presenting the lowest level of
ZEB1 (Figure 2). CL1 was shown to be enriched in stem-cell-
related signatures (Pommier et al., 2020) with low proliferation
activity. In contrast to CL1, the CL3 subgroup, containing the
majority of BRCA-deficient tumors and showing lower levels
of ZEB1, lower levels of ATM and higher levels of POLQ,
displays stronger basal-related characteristics. In basal-like tumor
subtypes with BRCA-mutations, ZEB1 expression may occur late
in the oncogenic process depending on high POLQ expression in
order to survive with the HR deficiency. In this case, even though
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FIGURE 1 | ZEB1/EMT controls TMEJ. When a replication fork is stalled (A), unloading of the replicative helicase and DNA polymerases leads to incision by a DNA
nuclease, which creates a single-ended DSB (B). After replication forks completion, a DSB is generated (C). A 5′ to 3′ end resection generates single-stranded DNA,
along which RPA and Rad51 loading can occur (D). When homologous recombination is defective, the alternative TMEJ pathway can operate on this resected DSB
(E); POLθ is recruited as a dimer which facilitates the proximity of DNA ends and stabilizes synapsed intermediates; the helicase domain of POLθ can displace either
RPA or RAD51 and the polymerase domain executes a bidirectional scanning initiated from the 3′ termini to identify internal microhomologies which can be
annealed, thus generating 3′ flaps. POLθ then removes the 3′ flaps and starts DNA synthesis with poor processivity and frequent aborted synthesis resulting in a
high rate of mutations including deletions and insertions from template switching events. When ZEB1 is expressed and stabilized by ATM, the expression of POLQ
(encoding the POLθ protein) is decreased and therefore impedes the action of the alternative mutagenic TMEJ pathway on the resected DSB. The TMEJ inhibition by
ZEB1 combined with ATM activity enhances accurate homologous recombination. Moreover, ZEB1 activates the transcription of ATM, both being under direct or
indirect control of TGFβ signaling.

ZEB1 downregulates POLQ expression, POLQ expression level
remains higher than normal, yet slightly lower than in the basal-
like subgroup. Interestingly, ATM expression follows ZEB1 in all
CL subtypes as anticipated with the already described mechanism
of recruitment of the transcriptional coactivators p300/PCAF
by ZEB1 to the ATM promoter (Zhang et al., 2018). Similarly,
ATM-mediated stabilization of ZEB1 plays an important role
for the enhanced accurate DNA repair ability by HR pathway
of radioresistant tumor cells (Zhang et al., 2014). POLQ and
ATM were firstly described in mice as synthetic semi-lethality.
Indeed, Atm-/- Polq-/- double mutant mice showed marked
developmental disadvantage (Shima et al., 2004). Moreover, the
co-inhibition of ATM and POLQ enhanced the sensitivity to

radiotherapy or chemotherapy (Goff et al., 2009; Pan et al., 2020).
All these data suggested a unique role of Polq in maintaining
genomic integrity, which is probably distinctive from the major
HR pathway regulated by ATM as evidenced by the extensive
evidence for synthetic lethality between HR and TMEJ. ZEB1,
stabilized by ATM, probably then acts as an inhibitor of TMEJ
to promote accurate HR DNA repair.

Moreover, downregulation of POLQ by ZEB1 was reported
to foster micronuclei formation (Prodhomme et al., 2021).
Indeed, it was shown in several organisms and under various
conditions that POLθ prevents micronuclei formation, whereas
the loss of POLθ expression leads to an increase in micronuclei
(Shima et al., 2004; Goff et al., 2009; Yousefzadeh et al.,
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FIGURE 2 | mRNA expression analysis of ZEB1, ATM, POLQ, and PARP1 for each breast cancer molecular subtype from the METABRIC cohort. As already shown,
the CL1 subgroup shows the highest stemness and EMT phenotype, exemplify here by ZEB1 expression, while CL2 and CL3 subgroups display an intermediate
stemness and EMT phenotype compared to their relative luminal/basal counterparts and CL1 tumors (Pommier et al., 2020). The mRNA levels of ATM, a major
player in DDR signaling, as well as of POLQ and PARP1, two major players in TMEJ, were analyzed for all breast cancer subtypes using the same method. Wilcoxon
tests. Boxplot: center line, median; box limits, upper and lower quartiles; whiskers, minimum to maximum; all data points are shown.

2014). These observations strengthened the notion that TMEJ
is a full-fledged pathway, since the absence of TMEJ in
claudin-low tumors leads to micronuclei originating most likely
from unrepaired DNA damage (Prodhomme et al., 2021).
However, in this specific breast tumor subtype, micronuclei
abundance, generally considered to be a hallmark of genome
instability (Jdey et al., 2017), is associated with low genomic
instability (Morel et al., 2017). We postulated that one of
the reasons explaining why micronuclei have no apparent
incidence on claudin-low genome stability is that a small
fraction of claudin-low cells with excessive micronuclei and/or
unrepaired DNA damage would die. This hypothesis is illustrated
in the analysis of neutral comet tail moments after the

simultaneous deletion of TGFβ and TMEJ pathways, where
an increase in DNA fragmentation is observed after cell
irradiation (Liu et al., 2018). Consequently, an augmentation of
unrepaired DNA may lead to cell death. Notably, radiosensitivity
is highest when both TGFβ signaling and POLQ function
are inactive (Liu et al., 2018). Further characterization of
upcoming ZEB1-expressing tumor cells is needed to confirm
this hypothesis, but one may suggest that ZEB1 and POLQ
have opposite and complementary roles in the control of
both the stability and integrity of breast cancer cell genomes.
In normal cells, endogenous levels of POLθ and ZEB1 offer
a compromise between the role of ZEB1 in protecting the
stability of the genome and that of POLθ in protecting its

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 August 2021 | Volume 9 | Article 727429

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-727429 August 6, 2021 Time: 15:21 # 6

Prodhomme et al. ZEB1 and TMEJ Influence Genome Stability

integrity. In pathological conditions such as breast cancer, this
balance is possibly disturbed due to high replicative stress, except
in ZEB1-expressing cells, as formerly demonstrated (Morel et al.,
2017). This dysregulation may contribute to POLQ dependence
for survival, especially in a BRCA-deficient context.

DISCUSSION

Recent studies have underlined the role of EMT in DNA
repair pathway choice and in particular, TMEJ activity in breast
cancers. TMEJ protects from replication stress by preserving
genomic integrity at the cost of mutations in most breast cancer
subtypes, except in BRCA non-mutated claudin-low subtypes,
in which the important contribution of ZEB1 as a protective
actor in both early and late steps of tumor development has
been demonstrated (Morel et al., 2017; Pommier et al., 2020;
Prodhomme et al., 2021).

Uncovering the mechanisms of TMEJ regulation in cancer
progression remains an ongoing task. We have shown that
the EMT transcription factor, ZEB1 interacts directly with the
POLQ promoter to control the expression of the POLQ gene
and prevent TMEJ activity. However, the mechanisms underlying
the upregulation of POLQ expression, in particular in BRCA-
deficient cancers, are still unknown.

POLθ was recently identified as a potential target in the
treatment of numerous breast tumors, especially BRCA-deficient
tumors. ZEB1 could constitute an important biomarker to
exclude BRCA non-mutated, claudin-low tumors from future
therapy with POLθ inhibitors. Conversely, considering the
repressive role of ZEB1 on TMEJ activity, the identification
of a ZEB1 inhibitor could be used to systematically
stimulate TMEJ and render those tumors more sensitive to
POLθ inhibition.
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